Group Sparsity Constrained Automatic Brain Label Propagation
نویسندگان
چکیده
In this paper, we present a group sparsity constrained patch based label propagation method for multi-atlas automatic brain labeling. The proposed method formulates the label propagation process as a graph-based theoretical framework, where each voxel in the input image is linked to each candidate voxel in each atlas image by an edge in the graph. The weight of the edge is estimated based on a sparse representation framework to identify a limited number of candidate voxles whose local image patches can best represent the local image patch of each voxel in the input image. The group sparsity constraint to capture the dependency among candidate voxels with the same anatomical label is also enforced. It is shown that based on the edge weight estimated by the proposed method, the anatomical label for each voxel in the input image can be estimated more accurately by the label propagation process. Moreover, we extend our group sparsity constrained patch based label propagation framework to the reproducing kernel Hilbert space (RKHS) to capture the nonlinear similarity of patches among different voxels and construct the sparse representation in high dimensional feature space. The proposed method was evaluated on the NA0-NIREP database for automatic human brain anatomical labeling. It was also compared with several state-of-the-art multi-atlas based brain labeling algorithms. Experimental results demonstrate that our method consistently achieves the highest segmentation accuracy among all methods used for comparison.
منابع مشابه
Brain Extraction Using Label Propagation and Group Agreement: Pincram
Accurately delineating the brain on magnetic resonance (MR) images of the head is a prerequisite for many neuroimaging methods. Most existing methods exhibit disadvantages in that they are laborious, yield inconsistent results, and/or require training data to closely match the data to be processed. Here, we present pincram, an automatic, versatile method for accurately labelling the adult brain...
متن کاملLabel to Region by Bi-Layer Sparsity Priors
In this work, we investigate how to automatically reassign the manually annotated labels at the image-level to those contextually derived semantic regions. First, we propose a bi-layer sparse coding formulation for uncovering how an image or semantic region can be robustly reconstructed from the over-segmented image patches of an image set. We then harness it for the automatic label to region a...
متن کاملSemi-automatic Brain Tumor Segmentation by Constrained MRFs Using Structural Trajectories
Quantifying volume and growth of a brain tumor is a primary prognostic measure and hence has received much attention in the medical imaging community. Most methods have sought a fully automatic segmentation, but the variability in shape and appearance of brain tumor has limited their success and further adoption in the clinic. In reaction, we present a semi-automatic brain tumor segmentation fr...
متن کاملAutomatic Structural Parcellation of Mouse Brain MRI Using Multi-Atlas Label Fusion
Multi-atlas segmentation propagation has evolved quickly in recent years, becoming a state-of-the-art methodology for automatic parcellation of structural images. However, few studies have applied these methods to preclinical research. In this study, we present a fully automatic framework for mouse brain MRI structural parcellation using multi-atlas segmentation propagation. The framework adopt...
متن کاملMagnetic Resonance Imaging of the Newborn Brain: Automatic Segmentation of Brain Images into 50 Anatomical Regions
We studied methods for the automatic segmentation of neonatal and developing brain images into 50 anatomical regions, utilizing a new set of manually segmented magnetic resonance (MR) images from 5 term-born and 15 preterm infants imaged at term corrected age called ALBERTs. Two methods were compared: individual registrations with label propagation and fusion; and template based registration wi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Machine learning for multimodal interaction : ... international workshop, MLMI ... : revised selected papers. Workshop on Machine Learning for Multimodal Interaction
دوره 7588 شماره
صفحات -
تاریخ انتشار 2012